SPECIFICATION # FOR 3300V, 6600V FLAT TYPE ETHYLENE PROPYLENE RUBBER INSULATED POLYCHLOROPRENE SHEATHED TRAILING CABLE Code: 3300V H-3PNCT 6600V H-3PNCT | Quantity | |----------------------| | Your Ref. No. | | Our Ref. No. | | Signed by Till Hayah | | TAKANORII WATANARE | Manager Engineering Dept. I Electric Wire & Cable Business Unit Proterial, Ltd. # Issue and revision record | REV.
NO. | Issue data | Item | Prepared by | Approved by | |-------------|---------------|--|-------------|-------------| | 1 | Oct. 29. 1997 | FIRST ISSUE | M. lipuma | R. Koike | | 1 | Dec. 15. 1999 | Clerical error was corrected as follows. (1) 3. 5 "A suitable separator tape shielding" → deleted (2) 3. 6 over the inner sheath → over the metallic shielding (3) Fig. 2 WRB→ BWR | E. Koishi | R. Koike | | 2 | Mar. 26. 2008 | (1) '2.6 Core identification' was added. (2) Conductor of 14mm² was added. (3) Approx. weight was corrected. (4) The permissible max. pulling tension was corrected. (5) The permissible max. compression force was added in table. (6) '6. Attention' was added. (7) Following comment was added. "The max overall diameter is about 1.05 times the approx. overall diameter." | 5-Kashiwa | J. Jake | | | | | | | #### 1. SCOPE This specification covers 3300V, 6600V Flat Type Ethylene Propylene Rubber Insulated Polychloroprene Sheathed Trailing Cable, which is reference to Japanese Electrical Facility Regulation and JIS C 3327-1993. #### 2. CONSTRUCTION #### 2.1 Conductor Conductor shall be stranded flexible conductor consisting of tinned annealed copper wires. #### 2.2 Conductor shielding A suitable semi-conducting tape shall be applied over the conductor. The thickness of conductor shielding shall be included in a part of the insulation thickness. #### 2.3 Insulation Insulation shall consist of ethylene propylene rubber compound. Nominal thickness shall be shown in the attached table. Ave. thick. : not less than 90% of the nominal thickness Min. thick. : not less than 80% of the nominal thickness. # 2.4 Insulation shielding A suitable semi-conducting tape shall be applied over the insulation. # 2.5 Metallic shielding Metallic shielding shall be tinned annealed copper wire braid. # 2.6 Core identification The core identification shall be made by the color of the tape which are applied under the metaric shielding. #### 2.7 Reinforcement A reinforcement consisting of suitable fabric tape shall be applied over the metallic shielding. #### 2.8 Assembly The insulated conductors shall be assembled in parallel. # 2.9 Sheath Sheath shall consist of black polychloroprene compound. Nominal thickness shall be shown in the attached table. Ave. thick.: not less than 90% of the nominal thickness Min. thick.: not less than 80% of the nominal thickness. #### 2.10 Dimension The dimension of the cable shall be in accordance with the attached table. # 3. MARKING Manufacturer's name and year of manufacture shall be marked by suitable methods. # 4. TEST The following tests shall be performed prior to shipment. - (1) Check of construction and dimension - (2) High voltage test (3300V: 9000/10min, 6600V: 17,000/10min) - (3) Measurement of insulation resistance - (4) Measurement of conductor resistance Table 1: Electrical properties | Size | Conductor resistance | Insulation resistance | |-----------------|----------------------|-----------------------| | (mm^2) | at 20℃ | at 20℃ | | | (ohms/km) | (Mohm-km) | | | | 3300V 6600V | | 14 | 1.39 | 500 500 | | 22 | 0.892 | 500 500 | | 30 | 0.661 | 500 500 | | 38 | 0. 525 | 500 500 | | 50 | 0.411 | 500 500 | | 60 | 0.329 | 400 500 | | 80 | 0. 243 | 400 500 | | 100 | 0. 193 | 400 500 | | | | | # 5. GUIDE TO USE This cable is designed for crane installation as shown below. R: Permissible minimum bending radius. # 6. Attention - (1) In any case, pulling tension and compression force must not exceed this value. For safety, regular pulling tension should be 1/3 of the permissible max. value. It is necessary to determine the pulling tention considering the compression force. - (2) Compression foece = Pulluing tention / Bending radius <u>Table 2 : Dimensions</u> (Code : 3300V H-3PNCT) | No. | | Conductor | | Thick. | Thick. | Thick. | Thick. | Approx. | Approx. | Permissible | Permissible | Permissible | |------|-----------------|-----------------|-----------------------|------------|-----------|---------------|--------|-----------------|---------|----------------|-----------------|-------------------| | of | size | construction | diam. | of | of shield | of | of | overal1 | weight | min. | max. | max. | | core | mm^2 | | | insulation | braid | reinforcement | sheath | diameter | | bending radius | pulling tension | compression force | | | | mm^2 | m ² No./mm | mm | mm | mm | mm | mm | mm | kg/km | mm | kN | | | | | | | | | | | | | | | | | 14 | 88/0.45 | 4. 9 | 3. 0 | 0.3 | 1.0 | 4.6 | 24×52 | 1860 | 390 | 1.6 | 4. 9 | | | 22 | 7/20/0.45 | 7.0 | 3. 0 | 0.3 | 1.0 | 4.8 | 26×58 | 2340 | 420 | 2. 5 | 4. 9 | | | 30 | 7/27/0.45 | 8. 1 | 3. 0 | 0.3 | 1. 0 | 4. 9 | 27×61 | 2700 | 440 | 3. 5 | 4. 9 | | | 38 | 7/34/0.45 | 9. 1 | 3. 0 | 0.45 | 1.0 | 5. 1 | 29×65 | 3190 | 470 | 4. 4 | 4. 9 | | 3 | 50 | 19/16/0.45 | 10.4 | 3. 5 | 0.45 | 1.0 | 5.4 | 32×73 | 3960 | 520 | 5.8 | 4. 9 | | | 60 | 19/20/0.45 | 11.6 | 3.5 | 0.45 | 1.0 | 5.6 | 33×76 | 4500 | 530 | 7. 0 | 4. 9 | | | 80 | 19/27/0.45 | 13. 5 | 3. 5 | 0.45 | 1. 0 | 5.8 | 35×82 | 5430 | 560 | 9. 4 | 4. 9 | | | 100 | 19/34/0.45 | 15. 2 | 3. 5 | 0.45 | 1.0 | 6. 0 | 37 × 87 | 6320 | 600 | 11.7 | 4. 9 | | | 14 | 88/0.45 | 4. 9 | 3. 0 | 0.3 | 1.0 | 5. 1 | 25×67 | 2500 | 400 | 2. 1 | 4. 9 | | | 22 | 7/20/0.45 | 7.0 | 3.0 | 0.3 | 1.0 | 5. 3 | 27×75 | 3150 | 440 | 3. 4 | 4.9 | | | 30 | 7/27/0.45 | 8. 1 | 3.0 | 0.3 | 1.0 | 5. 5 | 28×79 | 3650 | 450 | 4. 7 | 4. 9 | | | 38 | 7/34/0.45 | 9. 1 | 3.0 | 0.45 | 1.0 | 5. 7 | 30×85 | 4300 | 480 | 5. 9 | 4. 9 | | 4 | 50 | 19/16/0.45 | 10.4 | 3. 5 | 0.45 | 1.0 | 6. 1 | 33×95 | 5360 | 530 | 7.8 | 4. 9 | | | 60 | 19/20/0.45 | 11.6 | 3. 5 | 0.45 | 1.0 | 6. 3 | 35×99 | 6080 | 560 | 9. 4 | 4. 9 | | | 80 | 19/27/0.45 | 13. 5 | 3. 5 | 0.45 | 1.0 | 6.6 | 37×107 | 7370 | 600 | 12. 5 | 4. 9 | | | 100 | 19/34/0.45 | 15. 2 | 3. 5 | 0.45 | 1.0 | 6. 9 | 39 ×114 | 8600 | 630 | 15. 6 | 4. 9 | $[\]divideontimes$ The max overall diameter is about 1.05 times the approx. overall diameter. <u>Table 3 : Dimensions</u> (Code: 6600V H-3PNCT) | No. | Conductor | | | Thick. | Thick. | Thick. | Thick. | Approx. | Approx. | Permissible | Permissible | Permissible | |------|-----------------|--------------|-------|------------|-----------|---------------|--------|-----------------|---------|----------------|-----------------|-------------------| | of | size | construction | diam. | of | of shield | of | of | overall | weight | min. | max. | max. | | core | mm^2 | No./mm | | insulation | braid | reinforcement | sheath | diameter | | bending radius | pulling tension | compression force | | | | | mm | mm | mm | mm | mm | mm | kg/km | mm | kN | kN/m | | | 14 | 88/0.45 | 4. 9 | 5. 0 | 0. 45 | 1.0 | 5. 2 | 29×66 | 2780 | 470 | 1.6 | 4. 9 | | | 22 | 7/20/0.45 | 7. 0 | 5. 0 | 0.45 | 1. 0 | 5. 4 | 31×72 | 3350 | 500 | 2. 5 | 4. 9 | | | 30 | 7/27/0.45 | 8. 1 | 5. 0 | 0. 45 | 1. 0 | 5. 5 | 33×75 | 3750 | 530 | 3. 5 | 4. 9 | | | 38 | 7/34/0. 45 | 9. 1 | 5. 0 | 0.45 | 1. 0 | 5. 7 | 34×78 | 4200 | 550 | 4. 4 | 4. 9 | | 3 | 50 | 19/16/0.45 | 10. 4 | 5. 0 | 0.45 | 1. 0 | 5. 8 | 36×83 | 4760 | 580 | 5. 8 | 4. 9 | | | 60 | 19/20/0.45 | 11.6 | 5. 0 | 0. 45 | 1. 0 | 6. 0 | 37×86 | 5330 | 600 | 7. 0 | 4. 9 | | | 80 | 19/27/0.45 | 13. 5 | 5. 0 | 0.45 | 1.0 | 6.2 | 39×92 | 6320 | 630 | 9.4 | 4.9 | | | 100 | 19/34/0.45 | 15. 2 | 5. 0 | 0.45 | 1.0 | 6. 4 | 41×97 | 7260 | 660 | 11.7 | 4. 9 | | | 14 | 88/0.45 | 4. 9 | 5. 0 | 0. 45 | 1. 0 | 5. 8 | 31 × 86 | 3760 | 500 | 2. 1 | 4. 9 | | | 22 | 7/20/0.45 | 7. 0 | 5. 0 | 0.45 | 1.0 | 6. 1 | 33×93 | 4540 | 530 | 3. 4 | 4.9 | | | 30 | 7/27/0.45 | 8. 1 | 5. 0 | 0.45 | 1.0 | 6. 2 | 34×98 | 5090 | 550 | 4. 7 | 4.9 | | | 38 | 7/34/0.45 | 9. 1 | 5. 0 | 0.45 | 1.0 | 6.4 | 35×102 | 5680 | 560 | 5.9 | 4.9 | | 4 | 50 | 19/16/0.45 | 10.4 | 5.0 | 0.45 | 1.0 | 6.6 | 37 ×108 | 6470 | 600 | 7.8 | 4.9 | | | 60 | 19/20/0.45 | 11.6 | 5.0 | 0.45 | 1.0 | 6.8 | 39 ×112 | 7240 | 630 | 9.4 | 4.9 | | | 80 | 19/27/0.45 | 13.5 | 5. 0 | 0.45 | 1.0 | 7. 1 | 41 ×120 | 8600 | 660 | 12.5 | 4.9 | | | 100 | 19/34/0.45 | 15. 2 | 5.0 | 0.45 | 1.0 | 7.4 | 43×127 | 9910 | 690 | 15.6 | 4.9 | $[\]divideontimes$ The max overall diameter is about 1.05 times the approx. overall diameter. 3300V H-3PNCT $3 \times 60 \text{mm}^2$ 6600V H-3PNCT $3 \times 60 \text{mm}^2$ Fig. 1 Cable cross section Note) W : White R: Red B: Blue G : Green Fig. 2 Core identification